3.680 \(\int \frac{\cos (c+d x) (A+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=86 \[ \frac{2 \left (a^2 C+A b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{A b x}{a^2}+\frac{A \sin (c+d x)}{a d} \]

[Out]

-((A*b*x)/a^2) + (2*(A*b^2 + a^2*C)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt
[a + b]*d) + (A*Sin[c + d*x])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.177109, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {4105, 3919, 3831, 2659, 208} \[ \frac{2 \left (a^2 C+A b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{A b x}{a^2}+\frac{A \sin (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

-((A*b*x)/a^2) + (2*(A*b^2 + a^2*C)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt
[a + b]*d) + (A*Sin[c + d*x])/(a*d)

Rule 4105

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*n),
x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[-(A*b*(m + n + 1)) + a*(A + A*n
+ C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && NeQ[
a^2 - b^2, 0] && LeQ[n, -1]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx &=\frac{A \sin (c+d x)}{a d}-\frac{\int \frac{A b-a C \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a}\\ &=-\frac{A b x}{a^2}+\frac{A \sin (c+d x)}{a d}+\left (\frac{A b^2}{a^2}+C\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx\\ &=-\frac{A b x}{a^2}+\frac{A \sin (c+d x)}{a d}+\frac{\left (\frac{A b^2}{a^2}+C\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{b}\\ &=-\frac{A b x}{a^2}+\frac{A \sin (c+d x)}{a d}+\frac{\left (2 \left (\frac{A b^2}{a^2}+C\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b d}\\ &=-\frac{A b x}{a^2}+\frac{2 \left (\frac{A b^2}{a^2}+C\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} \sqrt{a+b} d}+\frac{A \sin (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.233935, size = 82, normalized size = 0.95 \[ \frac{-\frac{2 \left (a^2 C+A b^2\right ) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}+a A \sin (c+d x)-A b (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

(-(A*b*(c + d*x)) - (2*(A*b^2 + a^2*C)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] +
 a*A*Sin[c + d*x])/(a^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.103, size = 149, normalized size = 1.7 \begin{align*} 2\,{\frac{A\tan \left ( 1/2\,dx+c/2 \right ) }{ad \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }}-2\,{\frac{Ab\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{a}^{2}}}+2\,{\frac{A{b}^{2}}{d{a}^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+2\,{\frac{C}{d\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x)

[Out]

2/d*A/a*tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)-2/d*A/a^2*b*arctan(tan(1/2*d*x+1/2*c))+2/d/a^2/((a+b)*(a-b
))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A*b^2+2/d/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan
(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*C

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.550187, size = 656, normalized size = 7.63 \begin{align*} \left [-\frac{2 \,{\left (A a^{2} b - A b^{3}\right )} d x -{\left (C a^{2} + A b^{2}\right )} \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - 2 \,{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{4} - a^{2} b^{2}\right )} d}, -\frac{{\left (A a^{2} b - A b^{3}\right )} d x -{\left (C a^{2} + A b^{2}\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) -{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{{\left (a^{4} - a^{2} b^{2}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*(A*a^2*b - A*b^3)*d*x - (C*a^2 + A*b^2)*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d
*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos
(d*x + c) + b^2)) - 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d), -((A*a^2*b - A*b^3)*d*x - (C*a^2 +
A*b^2)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - (A*a^3 - A
*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.2548, size = 184, normalized size = 2.14 \begin{align*} -\frac{\frac{{\left (d x + c\right )} A b}{a^{2}} - \frac{2 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} a} - \frac{2 \,{\left (C a^{2} + A b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{\sqrt{-a^{2} + b^{2}} a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

-((d*x + c)*A*b/a^2 - 2*A*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*a) - 2*(C*a^2 + A*b^2)*(pi*floor(
1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2
+ b^2)))/(sqrt(-a^2 + b^2)*a^2))/d